Genetic manipulation of a metabolic enzyme and a transcriptional regulator increasing succinate excretion from unicellular cyanobacterium
نویسندگان
چکیده
Succinate is a building block compound that the U.S. Department of Energy (DOE) has declared as important in biorefineries, and it is widely used as a commodity chemical. Here, we identified the two genes increasing succinate production of the unicellular cyanobacterium Synechocystis sp. PCC 6803. Succinate was excreted under dark, anaerobic conditions, and its production level increased by knocking out ackA, which encodes an acetate kinase, and by overexpressing sigE, which encodes an RNA polymerase sigma factor. Glycogen catabolism and organic acid biosynthesis were enhanced in the mutant lacking ackA and overexpressing sigE, leading to an increase in succinate production reaching five times of the wild-type levels. Our genetic and metabolomic analyses thus demonstrated the effect of genetic manipulation of a metabolic enzyme and a transcriptional regulator on succinate excretion from this cyanobacterium with the data based on metabolomic technique.
منابع مشابه
Anionic metabolite biosynthesis enhanced by potassium under dark, anaerobic conditions in cyanobacteria
Potassium (K(+)) is an essential macronutrient for all living organisms including cyanobacteria. Cyanobacteria are a group of bacteria performing oxygenic photosynthesis, widely studied in basic and applied sciences. The primary metabolism of the unicellular cyanobacterium Synechocystis sp. PCC 6803 is altered by environmental conditions, and it excretes organic acids and hydrogen under dark, a...
متن کاملPathway-level acceleration of glycogen catabolism by a response regulator in the cyanobacterium Synechocystis species PCC 6803.
Response regulators of two-component systems play pivotal roles in the transcriptional regulation of responses to environmental signals in bacteria. Rre37, an OmpR-type response regulator, is induced by nitrogen depletion in the unicellular cyanobacterium Synechocystis species PCC 6803. Microarray and quantitative real-time polymerase chain reaction analyses revealed that genes related to sugar...
متن کاملChanges in primary metabolism under light and dark conditions in response to overproduction of a response regulator RpaA in the unicellular cyanobacterium Synechocystis sp. PCC 6803
The study of the primary metabolism of cyanobacteria in response to light conditions is important for environmental biology because cyanobacteria are widely distributed among various ecological niches. Cyanobacteria uniquely possess circadian rhythms, with central oscillators consisting from three proteins, KaiA, KaiB, and KaiC. The two-component histidine kinase SasA/Hik8 and response regulato...
متن کاملCloning, sequencing, and regulation of the global nitrogen regulator gene ntcA in the unicellular diazotrophic cyanobacterium Cyanothece sp. strain BH68K.
In cyanobacteria, ammonium represses expression of proteins involved in nitrogen fixation and assimilation. The global nitrogen regulator gene ntcA encodes a DNA-binding protein, NtcA, that is a transcriptional activator of genes subject to nitrogen control. We report the cloning and sequencing of the ntcA gene from a nitrogen-fixing unicellular cyanobacterium, Cyanothece sp. strain BH68K. The ...
متن کاملTranscriptional and translational regulation of nitrogenase in light-dark- and continuous-light-grown cultures of the unicellular cyanobacterium Cyanothece sp. strain ATCC 51142.
Cyanothece sp. strain ATCC 51142 is a unicellular, diazotrophic cyanobacterium which demonstrated extensive metabolic periodicities of photosynthesis, respiration, and nitrogen fixation when grown under N2-fixing conditions. N2 fixation and respiration peaked at 24-h intervals early in the dark or subjective-dark period, whereas photosynthesis was approximately 12 h out of phase and peaked towa...
متن کامل